Ternari Berbasis Palladium pada Matriks N-rGO sebagai Peningkatan Aktivitas ORR dalam Media Alkalin

Frizka Vietanti

Abstract


Oxygen Reduction Reaction (ORR) adalah reaksi dasar pada sel bahan bakar untuk menghasilkan energi listrik.  Logam ternari berbasis Palladium (Pd-based) yang didepositkan pada matriks karbon mempunyai peranan penting untuk peningkatan kemampuan ORR. Logam ternari berbasis Pd-XY (XY = Fe, Co, Ni) yang didepositkan pada Nitrogen-doped graphene (N-rGO) mampu menghasilkan aktivitas ORR tinggi dalam media alkali. Metode yang digunakan pada penelitian ini diantaranya adalah hidrotermal mikrowave untuk mensintesis N-rGO, metode emulsi untuk mensintesis ternari Pd-XY, dan teknik rota-evaporasi untuk mendepositkan ternari Pd-XY pada N-rGO. Potensial onset dan densitas arus yang terukur adalah PdFeCo/N-rGO > PdCoNi/N-rGO > PdFeNi/N-rGO. Katalis PdFeCo/N-rGO menunjukkan jumlah transfer elektron tertinggi, mendekati transfer dominan empat elektron, dan menghasilkan % HO2- terkecil. Hasil XRD PdFeCo/N-rGO juga menunjukkan ukuran kristal terkecil yang menyebabkan peningkatan aktivitas ORR. Distribusi yang homogen pada nanopartikel PdFeCo di atas lembaran N-rGO teramati dengan jelas pada FE-TEM.


Keywords


ternari berbasis Pd-XY (XY = Fe, Ni, dan Co); N-rGO; ORR.

Full Text:

PDF PDF

References


A. Zadick, L. Dubau, N. Sergent, G. Berthome, M. Chatenet, Huge instability of Pt/C catalysts in alkaline medium. ACS Catalysis, 5 (2015) 4819-4824.

H.R. Colón-Mercado, B.N. Popov, Stability of platinum based alloy cathode catalysts in PEM fuel cells. Journal of Power Sources, 155 (2006) 253-263.

J.H. Shim, Y.S. Kim, M. Kang, C. Lee, Y. Lee, Electrocatalytic activity of nanoporous Pd and Pt: effect of structural features. Physical Chemistry Chemical Physics, 14 (2012) 3974-3979.

H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11 (2016) 601-625.

L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang, L. Dai, Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical Communications, 52 (2016) 2764-2767.

H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, H. Song, Y. Zhong, B. Zhang, High performance Fe-and N-doped carbon catalyst with graphene structure for oxygen reduction. Scientific reports, 3 (2013) 1765.

J. Xu, M. Wang, N.P. Wickramaratne, M. Jaroniec, S. Dou, L. Dai, High‐Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen‐Doped Graphene Foams. Advanced materials, 27 (2015) 2042-2048.

Z.-J. Lu, S.-J. Bao, Y.-T. Gou, C.-J. Cai, C.-C. Ji, M.-W. Xu, J. Song, R. Wang, Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. Rsc Advances, 3 (2013) 3990-3995.

Y.-H. Lee, K.-H. Chang, C.-C. Hu, Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. Journal of Power Sources, 227 (2013) 300-308.

D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruña, Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature materials, 12 (2013) 81.

L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.Y. Ma, D. Su, X. Huang, Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 354 (2016) 1410-1414.

W. Wang, D. Zheng, C. Du, Z. Zou, X. Zhang, B. Xia, H. Yang, D.L. Akins, Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. Journal of Power Sources, 167 (2007) 243-249.

M. Tarasevich, G. Zhutaeva, V. Bogdanovskaya, M. Radina, M. Ehrenburg, A. Chalykh, Oxygen kinetics and mechanism at electrocatalysts on the base of palladium–iron system. Electrochimica acta, 52 (2007) 5108-5118.

V.A. Setyowati, H.C. Huang, C.C. Liu, C.H. Wang, Effect of iron precursors on the structure and oxygen reduction activity of iron–nitrogen–carbon catalysts. Electrochimica Acta, 211 (2016) 933-940.

D.A. Stevens, J.R. Dahn, Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells. Journal of The Electrochemical Society, 150 (2003) A770-A775.

L. Sun, B. Liao, X. Ren, Y. Li, P. Zhang, L. Deng, Y. Gao, Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 235 (2017) 543-552.

G.A. Goe

naga, A.L. Roy, N.M. Cantillo, S. Foister, T.A. Zawodzinski, A family of platinum group metal-free catalysts for oxygen reduction in alkaline media. Journal of Power Sources, 395 (2018) 148-157.

Y.-H. Cho, O.-H. Kim, D.Y. Chung, H. Choe, Y.-H. Cho, Y.-E. Sung, PtPdCo ternary electrocatalyst for methanol tolerant oxygen reduction reaction in direct methanol fuel cell. Applied Catalysis B: Environmental, 154 (2014) 309-315.

C. He, J. Tao, P.K. Shen, Solid Synthesis of Ultrathin Palladium and Its Alloys’ Nanosheets on RGO with High Catalytic Activity for Oxygen Reduction Reaction. ACS Catalysis, 8 (2018) 910-919.

H. Peng, F. Liu, X. Liu, S. Liao, C. You, X. Tian, H. Nan, F. Luo, Z. Fu, P. Huang, Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catalysis, 4 (2014) 3797-3805.




DOI: https://doi.org/10.32528/jp.v4i2.3140

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 J-Proteksion

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats